Log, Antilog Table [1-100] PDF

Hi in this i am going to share with you all one of the best and important Logarithm and Antilogarithm Table. you can download Log Table PDF with Antilogarithm chart.

we have provided the log on this page along with table definition you all can download complete table from the given link below.

In mathematics, the logarithm table is used to find the value of the logarithmic function. The simplest way to find the value of the given logarithmic function is by using the Logarithm table. Here the definition of the logarithmic function and procedure to use the logarithm table is given in detail.

log Table use in physics chemistry and mathematics and others many subjects.

Log Table 1 to 100

LogValue
log(1)
log(2)0.3010299957
log(3)0.4771212547
log(4)0.6020599913
log(5)0.6989700043
log(6)0.7781512504
log(7)0.84509804
log(8)0.903089987
log(9)0.9542425094
log(10)1
log(11)1.041392685
log(12)1.079181246
log(13)1.113943352
log(14)1.146128036
log(15)1.176091259
log(16)1.204119983
log(17)1.230448921
log(18)1.255272505
log(19)1.278753601
log(20)1.301029996
log(21)1.322219295
log(22)1.342422681
log(23)1.361727836
log(24)1.380211242
log(25)1.397940009
log(26)1.414973348
log(27)1.431363764
log(28)1.447158031
log(29)1.462397998
log(30)1.477121255
log(31)1.491361694
log(32)1.505149978
log(33)1.51851394
log(34)1.531478917
log(35)1.544068044
log(36)1.556302501
log(37)1.568201724
log(38)1.579783597
log(39)1.591064607
log(40)1.602059991
log(41)1.612783857
log(42)1.62324929
log(43)1.633468456
log(44)1.643452676
log(45)1.653212514
log(46)1.662757832
log(47)1.672097858
log(48)1.681241237
log(49)1.69019608
log(50)1.698970004
log(51)1.707570176
log(52)1.716003344
log(53)1.72427587
log(54)1.73239376
log(55)1.740362689
log(56)1.748188027
log(57)1.755874856
log(58)1.763427994
log(59)1.770852012
log(60)1.77815125
log(61)1.785329835
log(62)1.792391689
log(63)1.799340549
log(64)1.806179974
log(65)1.812913357
log(66)1.819543936
log(67)1.826074803
log(68)1.832508913
log(69)1.838849091
log(70)1.84509804
log(71)1.851258349
log(72)1.857332496
log(73)1.86332286
log(74)1.86923172
log(75)1.875061263
log(76)1.880813592
log(77)1.886490725
log(78)1.892094603
log(79)1.897627091
log(80)1.903089987
log(81)1.908485019
log(82)1.913813852
log(83)1.919078092
log(84)1.924279286
log(85)1.929418926
log(86)1.934498451
log(87)1.939519253
log(88)1.944482672
log(89)1.949390007
log(90)1.954242509
log(91)1.959041392
log(92)1.963787827
log(93)1.968482949
log(94)1.973127854
log(95)1.977723605
log(96)1.982271233
log(97)1.986771734
log(98)1.991226076
log(99)1.995635195
log(100)2

Log & Antilog Table Chart

Logarithm table chart
Logarithm table chart
antilogarithm table chart
antilogarithm table chart

How to Use log Table

1. Find the Value of log(19.67)

See also  Linear Algebra Krishna Series PDF

Step 1: first identify the Characteristic Part and Mantissa part of given algorithm. we want to find base 10 log of 19.67 value.

Characteristic Part = 19

Mantissa part = 67

Find the Value of log

Step 2: 19 lies between 10 and 99 so its log will lie between 1.

or just use (total characteristic digit-1) = (2-1) = 1

Step 3: Now look at the logarithm table using row number 19 to refer to column number 6 whose value will be 2923.

Step 4: Now check the mean column no 7 whose value will be 16.

Now just add both column no 6 and 7 value

2923 + 16 = 2939

the final answer value will be 1.2939

log(19.67) = 1.2939

2. Find the value of log(1563)

Total Digit are given = 4

15 = Check the Value in first column

6 column = 1931

3 column = 8

add both 1931+8=1939

or just use (total characteristic digit-1) = (4-1) = 3

final answer 3.1939

log(1563) = 3.1939

3. Find the value of log(15.63)

Total Digit are given = 2

15 = Check the Value in first column

6 column = 1931

3 column = 8

add both 1931+8=1939

or just use (total characteristic digit-1) = (1-1) = 0

final answer 1.1939

log(15.63) = 1.1939

4. Find the value of log(1.563)

Total Digit are given = 1

15 = Check the Value in first column

6 column = 1931

3 column = 8

add both 1931+8=1939

or just use (total characteristic digit-1) = (1-1) = 0

final answer 0.1939

log(1.563) = 0.1939

Property of Log

  1. logx(ab) = logxa+ logxb [Product Rule]
  2. logx(a/b) = logxa – logxb [Quotients Rule]
  3. loga x = logx * logb
  4. logb x = logx * logb
  5. logb x= n logb x [Power Rule]
  6. log(a+b)=loga+b/(2.42×a)

Question: Find the value of log(737) using Property of Log?

See also  Differential Calculus by Shanti Narayan PDF

log(mn)=logm+logn

=log(737)=log(7.37×10 2 )

=log(7.37)+log(10 2 ) by using

=log(7.37)+2[log10 n =n]

=log(7+0.37)+2

Now applying the formula log(a+b)=loga+b/(2.42×a);

=log(7)+0.37/(2.42×7)+2

it comes out to be 2.867 which is the log value for 737.

Download PDF Now

Leave a Comment