Hi, in this, I am going to share with you one of the best and most important logarithms and antilogarithm tables. You can download the **Log Table PDF** with the Antilogarithm chart.

We have provided the log on this page along with the table definition. You can download the complete table from the given link below.

In mathematics, the logarithm table is used to find the value of the logarithmic function. The simplest way to find the value of the given logarithmic function is by using the logarithm table. Here, the definition of the logarithmic function and the procedure to use the logarithm table are given in detail.

log Table used in physics chemistry and mathematics and many subjects.

# Logarithm Table

Number | Log (base 10) |
---|---|

1 | 0 |

2 | 0.301 |

## Log Table 1 to 100

Log | Value |

log(1) | 0 |

log(2) | 0.3010299957 |

log(3) | 0.4771212547 |

log(4) | 0.6020599913 |

log(5) | 0.6989700043 |

log(6) | 0.7781512504 |

log(7) | 0.84509804 |

log(8) | 0.903089987 |

log(9) | 0.9542425094 |

log(10) | 1 |

log(11) | 1.041392685 |

log(12) | 1.079181246 |

log(13) | 1.113943352 |

log(14) | 1.146128036 |

log(15) | 1.176091259 |

log(16) | 1.204119983 |

log(17) | 1.230448921 |

log(18) | 1.255272505 |

log(19) | 1.278753601 |

log(20) | 1.301029996 |

log(21) | 1.322219295 |

log(22) | 1.342422681 |

log(23) | 1.361727836 |

log(24) | 1.380211242 |

log(25) | 1.397940009 |

log(26) | 1.414973348 |

log(27) | 1.431363764 |

log(28) | 1.447158031 |

log(29) | 1.462397998 |

log(30) | 1.477121255 |

log(31) | 1.491361694 |

log(32) | 1.505149978 |

log(33) | 1.51851394 |

log(34) | 1.531478917 |

log(35) | 1.544068044 |

log(36) | 1.556302501 |

log(37) | 1.568201724 |

log(38) | 1.579783597 |

log(39) | 1.591064607 |

log(40) | 1.602059991 |

log(41) | 1.612783857 |

log(42) | 1.62324929 |

log(43) | 1.633468456 |

log(44) | 1.643452676 |

log(45) | 1.653212514 |

log(46) | 1.662757832 |

log(47) | 1.672097858 |

log(48) | 1.681241237 |

log(49) | 1.69019608 |

log(50) | 1.698970004 |

log(51) | 1.707570176 |

log(52) | 1.716003344 |

log(53) | 1.72427587 |

log(54) | 1.73239376 |

log(55) | 1.740362689 |

log(56) | 1.748188027 |

log(57) | 1.755874856 |

log(58) | 1.763427994 |

log(59) | 1.770852012 |

log(60) | 1.77815125 |

log(61) | 1.785329835 |

log(62) | 1.792391689 |

log(63) | 1.799340549 |

log(64) | 1.806179974 |

log(65) | 1.812913357 |

log(66) | 1.819543936 |

log(67) | 1.826074803 |

log(68) | 1.832508913 |

log(69) | 1.838849091 |

log(70) | 1.84509804 |

log(71) | 1.851258349 |

log(72) | 1.857332496 |

log(73) | 1.86332286 |

log(74) | 1.86923172 |

log(75) | 1.875061263 |

log(76) | 1.880813592 |

log(77) | 1.886490725 |

log(78) | 1.892094603 |

log(79) | 1.897627091 |

log(80) | 1.903089987 |

log(81) | 1.908485019 |

log(82) | 1.913813852 |

log(83) | 1.919078092 |

log(84) | 1.924279286 |

log(85) | 1.929418926 |

log(86) | 1.934498451 |

log(87) | 1.939519253 |

log(88) | 1.944482672 |

log(89) | 1.949390007 |

log(90) | 1.954242509 |

log(91) | 1.959041392 |

log(92) | 1.963787827 |

log(93) | 1.968482949 |

log(94) | 1.973127854 |

log(95) | 1.977723605 |

log(96) | 1.982271233 |

log(97) | 1.986771734 |

log(98) | 1.991226076 |

log(99) | 1.995635195 |

log(100) | 2 |

## Log & Antilog Table Chart

### How to Use log Table

**1. Find the Value of log(19.67)**

Step 1: first identify the Characteristic Part and Mantissa part of the given algorithm. we want to find the base 10 log of **19.67** value.

Characteristic Part = 19

Mantissa part = 67

**Step 2: **19 lies between 10 and 99 so its log will lie between 1.

or just use (total characteristic digit-1) = (2-1) = 1

**Step 3:** Now look at the logarithm table using row number 19 to refer to column number 6 whose value will be **2923**.

**Step 4: **Now check the mean column no 7 whose value will be **16**.

Now just add both columns no 6 and 7 value

**2923 + 16 = 2939**

the final answer value will be **1.2939**

**log(19.67)** = **1.2939**

**2. Find the value of log(1563)**

Total Digit is given = 4

15 = Check the Value in the first column

6 column = 1931

3 column = 8

add both 1931+8=1939

or just use (total characteristic digit-1) = (4-1) = 3

final answer 3.1939

**log(1563) = 3.1939**

**3. Find the value of log(15.63)**

Total Digit is given = 2

15 = Check the Value in the first column

6 column = 1931

3 column = 8

add both 1931+8=1939

or just use (total characteristic digit-1) = (1-1) = 0

final answer 1.1939

**log(15.63) = 1.1939**

**4. Find the value of log(1.563)**

Total Digit is given = 1

15 = Check the Value in the first column

6 column = 1931

3 column = 8

add both 1931+8=1939

or just use (total characteristic digit-1) = (1-1) = 0

final answer 0.1939

**log(1.563) = 0.1939**

### Property of Log

**l**og_{x}(ab) = log_{x}a+ log_{x}b [Product Rule]- log
_{x}(a/b) = log_{x}a – log_{x}b [Quotients Rule] - log
_{a}x = log_{b }x * log_{a }b - log
_{b}x = log_{a }x * log_{a }b - log
_{b}x^{n }= n log_{b}x [Power Rule] - log(a+b)=loga+b/(2.42×a)

**Question:** Find the value of log(737) using Property of Log?

log(mn)=logm+logn

=log(737)=log(7.37×10 2 )

=log(7.37)+log(10 2 ) by using

=log(7.37)+2[log10 n =n]

=log(7+0.37)+2

Now applying the formula log(a+b)=loga+b/(2.42×a);

=log(7)+0.37/(2.42×7)+2

it comes out to be 2.867 which is the log value for 737.